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Abstract—The path-independent M-integral is utilized to derive close form solutions for energy
release rates for edge cracks in composite wedges under several loading conditions. The composite
wedge considered consists of n wedges of different anisotropic elastic materials and wedge angles.
The edge crack extends from the apex of the composite wedge and can lie either in the homogeneous
region or along one of the interfaces. Three types of problem are considered. In the type | problem,
concentrated forces are applied at the apexes. In the type 2 problem, the faces of the composite
wedge are subjected to constant displacements. [n the type 3 problem, mixed boundary conditions
are prescribed at the wedge faces. For interface cracks, results are valid for “traction-frec™ cracks
as well as for cracks with contact zones. For type 2 and type 3 problems. it is found that the energy
release rate is independent of the crack orientation.

[. INTRODUCTION

Various authors (Eshclby, 1975 ; Freund, 1978 ; Ouchterlony, 1978) have given an approach
based on the path-independent M-integral to calculate the energy release rates for some
cracks in homogenceous isotropic clastic bodies. Nachman and Walton (1980) and Kubo
(1982) showed that the approuch could also be applied to interface cracks in isotropic
composites. The case of an edge crack in an angularly inhomogeneous isotropic wedge has
been studied by Wu and Chen (1989). In this paper, the approach is used to derive energy
release rates for an edge crack in a composite wedge, as shown in Fig. 1. The composite
wedge consists of n wedges of different anisotropic clastic materials. In the cylindrical
coordinate system, each wedge occupices the region

O <0<, 0Sr<oo, k=12,...,n 0
in which

0, <0, <<, (2)

The edge crack penetrates from the apex into the composite and is inclined by an angle 6.
with 0, < 0. < 0,. The crack tip can either lodge at a homogeneous region or at one of the
interfaces. Three types of problem are considered :

1. The apexes of the cracked wedge p* and p~ are loaded by concentrated forces.

2. The outer faces of the composite wedge, 6 = ,and 8 = 6,, are subjected to constant
displacements.

3. The wedge faces are subjected to constant displacement in the x, direction while
the tractions f, and ¢; are zero.

The types of boundary condition are shown in Fig. |.

For the type | problem, calculation of the M-integral only requires the solutions for
uncracked composite wedges with the same boundary conditions. Such solutions have been
provided by Ting (1982) using an elegant formulation based on Stroh’s method (1958) for
anisotropic elasticity. It will be shown in the following that for type 2 and 3 problems the
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Fig. 1. A composite wedge subjected to three loading conditions.

energy release rates can also be calculated using the solutions for uncracked composite
wedges with the same boundary conditions which can be obtained by the formulation given
by Ting (1982). For type 2 and type 3 problems, the results show that the energy release
rate is independent of the orientation of the crack.

It the edge crack is located in one of the homogeneous wedges, the near-tip stress ficld
is proportional to r "'* and is characterized by three stress intensity factors corresponding
to the traction components along the prolongation of the crack linc. The encrgy release
rate is given by a quadratic in the stress intensity factors (Barnett and Asaro, 1972}, If the
loading, geometry, and materials considered are symmetric or anti-symmetric with respect
to the erack line such that only one of the stress intensity fuctors is nonzero, then the stress
intensity lactor can be determined from the energy release rate derived in this paper. [f the
crack lies along one of the interfaces and the crack faces are assumed traction-free, the
near-tip stress field exhibits singularities of the types r~ "2 and r "% in gencral with y
being a constant related to the elastic constants of the adjoining two materials (Ting, 1986).
Bassani and Qu (1989} and Qu and Bassani (1989) discussed cases in which y = 0 and the
near-tip ficld is the same as that for homogeneous media, For interface cracks with y # 0,
several definitions of the stress intensity factors have been proposed (Willis, 1971 Suo,
1990 Wu, 1990a) to characterize the near-tip field. The stress intensity factors, regardless
of the definition adopted, are related to tractions along the interface in a different manner
from those for cracks with a square-root singularity. For traction-free interface cracks, the
cnergy release rute can also be expressed in terms of a quadratic in stress intensity factors
(Willis, 1971 ; Suo, 1990; Wu, 1990a). However, the stress intensity fuctors and the modes
of loading arc usually intermixed so that more than one stress intensity tactor is present.
In this case, knowledge of the energy release rate alone is not sufficient to determine
separate stress intensity factors. It is well known that prescription of traction-free conditions
generally leads to crack face overlapping (England, 1965 Anderson, 1988 ; Wy, 1990a). A
model to overcome this difficulty was proposed by Comninou (1977) for isotropic materials.
The model assumes that frictionless contact zones exist behind the crack tips. It was found
for isotropic materials that the near-tip stress field is square-root singular but is characterized
by only onc independent stress intensity factor relating to the in-plane shear stress for plane
strain deformation. The model was extended for anisotropic materials by Wu (1990b). It
was shown by Wu (1990b) that in general the singularitics of the ncar-tip stress ficld for
the contact zone model are r~ V3% where y* is a bimaterial constant. The near-tip strcss
field is characterized by two independent stress intensity factors relating to the in-planc
shear and anti-planc shear stresses at the interface and the energy release rate is a quadratic
in the stress intensity factors. Conditions for y* = 0 were given by Wu (1990b). For
anisotropic bimaterials in which in-planc shear and anti-plane shear deformations are
uncoupled, scparatc stress intensity factors can be obtained from the energy release rate
(Wu, 1990b). The energy release rates obtained here are valid for traction-free interface
cracks as well as those with contact zones.
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The plan of the paper is as follows. In Section 2, the approach using the M-integral to
obtain the energy release rates is reviewed. In Section 3. the form of the basic solutions for
uncracked composite wedges as presented by Ting (1982) is given and the relevant results
for the application of the M-integral approach are derived. Results of the energy release
rates are presented in Section 4.

2. THE M-INTEGRAL
The M-integral is defined by

M= J (Wnx;— teug ;. x;) ds 3)
e

where W is the strain energy density, #; is the unit normal to curve C, ¢, is the traction on
C. and repeated indices imply summation. This summation conveation will be followed
throughout this paper. The procedure to derive the energy release rates hinges on the fact
that M = 0 if Cis a closed path surrounding a simply connected region in which no elastic
singularities are present. If Cis a circular arc, eqn (3) can be expressed in a more convenient
form in terms of the displacements and the stress functions ®, as

M= L[ [0, cu, + oo, du, do @)
=2 \FFr @ 0 &)

The stress functions are defined such that the traction t on a contour I™ is given by

o 5
=T ©)
where s is the arce length along T I Cis a radial ling, eqn (3) becomes
b, Ju,

For the problems of interest, let C be the path shown as dotted line in Fig. [. As
discussed by Nachman and Walton (1980), application of the M-integral results in the
following identity :

1
= (M(C.)=M(C,)-M(C ) (7N

where C,, is a circular arc surrounding the crack and subtending from 0, t0 0,, C . and C,
are small arcs surrounding the two apexes, p* and p~, subtending from 0, to 0. and 0, to
0,. respectively, a is the Iength of the crack, and G is the energy release rate. For eqn (7) to
hold, the contributions to the M-integral as evaluated along the wedge fuces and the crack
faces must vanish. From eqn (6), this requires

cu,

l,-é"'_'=0 (8)

or the traction must be orthogonal to the displacement gradient along the radial line. The
requirement is satisfied for wedge faces in the problems of interest. The requirement is also
satisfied for the crack faces if the crack faces are assumed to be either traction-free or if’
frictionless contact zones are assumed to exist since the tangential components of the
traction and the normal displacement are zero in the contact zones.
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If C, is sufficiently far away from the origin, M(C ) can be evaluated using solutions
for an uncracked composite wedge with the same boundary conditions. Such solutions are
provided by Ting (1982). Similarly. if C _ and C. are sufficiently close to the apexes p* and
p~ of the cracked composite. M(C.) and M(C _) can also be evaluated using the asymptotic
solutions for sub-wedges with apexes p~ and p~, respectively. For type | problems, Ting's
solution with concentrated force acting at the apex is again applicable. For type 2 and 3
problems. the asymptotic stress field corresponding to homogeneous boundary conditions
t = 0 on one fuce and u = 0 or u, = 1. = 1, = 0 on the other must be sought. In general,
the actual form of the asymptotic stress field of an anisotropic composite wedge depends
on the elastic constants of the individual homogeneous wedges, geometry of the composite
wedge. boundary conditions on the wedge faces. and interface conditions. If the dis-
placement field is required to be continuously bounded at the apex. the asymptotic stress
near the apex has the form (Ting. 1981)

riF(r.6) 9)

where ¢ < | and Fis a real function of the polar coordinates (r, #). The function F contains
log r. powers of log r and trigonometric functions with ¢ and log r as arguments. This
requirement of bounded displacement is satisfied if the apex of the wedge 1s not subjected
to concentrated forces or the displacements preseribed on the wedge faces are identical and
tinite at the apex. In fact, Ting's solution, to be discussed in the next section, corresponds
to the cases where there are forces acting at the apex or the displacement is discontinuous
at the apex. In those cases, the stress singularity is {/r. For type 2 and 3 problems, the
aforementioned situations are not present, and it is therefore reasonable to assume that egn
(9) is valid near the apex. This is truc for the homogencous sub-wedge with wedge angle n
for type 2 problems in which case ¢ = 0.5 (Ting, 1986). It ts not difficult to show that for
type 3 problems with the same wedge S is also 0.5, With the asymptotic stress of eqn (9)
substituted in eqn (4), the corresponding M(C ) and M(C ) vanish as r - 0.

3 UNCRACKED COMPOSITE WEDGES
For the composite wedge shown in Fig. | but without the crack, the solutions in the
k th composite for the three types of boundary conditions shown in Fig. | can be represented
as (Ting. 1982)

logr .
u® = OB L §W ()4 AN (0)g + P (10)
log . -
oY = 79:( g—LY2O)h+S“(0)g (1)

where h, g and ¢ are real constant vectors. In eqns (10) and (11) the matrices are given
by

¢
S = - 7'! j T "(w)R(w)dw (12)
l (/]
Ao = J T "(w)dw (13)
L) = H [Q(w) = R(w)T '(w)R"(w)] dw (14)

and
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Qu (@) = cyn(win (w) (15)
Ry (@) = cun (@)m,(w) (16)
Ti(w) = cjsm (w)m,(w) an
n"(w) = [cos w. sin w, 0] (18)
m’(w) = [—sin w, cos w, 0] (19)

with c,;,, being the elastic constant. The superscript & in S*, H*' and L% denotes that the
elastic constants for the kth wedge are used. Equations (10) and (11) are valid for isotropic
materials as well. The matrices S, H and L for isotropic materials are listed below

1 —cos 20 ~((k=D0+sin20) 0
- = . e _ 2
S(6) T ED (x—1)0—sin 20 cos 20— 1 0 (20)
0 0 0
| F2xk0+sin20 | —cos 20 0
¥ N = — O Yef) — i
1) S+ 1) l—cos20  2x0—sin 20 0 2n
L o 0 2(x+1)0
[204sin20 1—cos20 0
i) = 2 | 1—cos20 20-sin20 0 (22)
‘ - ik + l) (I\'+ 1) -
0 0 ~y 0

where k = 3 —4v for plance strain deformation with v being Poisson’s ratio and u the shear
modulus,

Note that the constant vectors h and g in eqns (10) and (11) arc the same for all k.
This is because the traction t, and the displacement gradient du/dr corresponding to eqns
(10) and (11) on the radial planes are given by

il ] l
tu="b“;=—;;g (23)
du |

and these quantities are continuous across the interfaces. The rigid body displacement ¢
in eqn (10) is determined by the continuity conditions on the displacement at the interfaces,
i.c.

c*r 48D (Ph+ A% P (0)g = ¢ + 80 (0 +HY (0,)g (25)

fork=1,2,....,n—1. When h and g are known, eqn (25) provides solutions for ¢?, ..., c™
in terms of ¢'"” which can be arbitrary.

With the form of the solutions represented as in eqns (10) and (11), the condition that
the contribution to the M-integral along the radial lines vanishes as described by eqn (8) is
expressed by
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The contribution to the M-integral, M,, along part of the circular arc in the Ath wedge can
be obtained by substituting eqns (10) and (11) into eqn (4). The result is given by

M, = "172 [8TAu® +h"AD*) (27)

where
Au(k) _ uik)(gk) _u(k)(ek ) I) (28)
A(D'k) = (D(kp(ok) _‘Dth(gk‘ l)‘ (29)

In deriving eqn (27). eqn (26) has been used. The expression of the M-integral for the entire
circular subtending from 6, to 0, is simply

ul [
M=y M, = ﬁ[g'b+hrf] (30)
k=1 -
where
b=u"(r.0,)—u"(r.0,) (3n
f=®"(r0,) -0 "(r.0,). (32)

Equation (30) is the main result of this section. The simple form of eqn (30) ¢nables one
to obtain the value of the M-integral as soon as the constants h and g are determined.
4. ENERGY RELEASE RATES

In this section explicit solutions of the ¢nergy rates for the problems shown in Fig. |
are derived using eqn (7) in conjunction with eqn (30). Without loss of generality, the crack
is assumed to lic in the Ath wedge, ie. 0, ., €0, < 0.
4.1. Problem |

Consider the line foree £, acting at the apex of the composite wedge subtending from
0.to 0, in Fig. 1. As the traction is zero on the wedge faces, from eqn (23), it follows that

g=0. (33)

The constant h can be determined by the fact the traction resultant on the circulur arc from
0. to U, must be in equilibrium with the applied force £, | i.c.

Y A + @9 (r,0,) = ®¥(r,0,) =1, (34)

Jak
From eqn (11), h is determined as
h=-2,'f, (33)

where &, is defined by

L, = Y ALY +LR0)-1%0). (36)

jkt 1

With eqns (33) and (35). from egn (30), the corresponding M(C.,) is
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!
M(C.) = -5 (L2, (37)

Similarly M(C_) for the composite wedge 8, < 8 < 6. with the line force f_ acting at the
apex is given by

1
MC. )= ——fTP2'f_ (38)
2n
where & _ is defined by
k-1 R R R
F_ =Y ALV +L*%(0,)-L* (0, ). 39)
j=1

For M(C,,). the solutions of the entire composite wedge from 8, < 8 < 8, with the force
f, +f_ must be used. The result is

t
M(C,) = —;,;(f++f_)r,£/’“'(f,,+f_) (40)
where 2 is given by
=2, +2_ =Y ALY 1)
=1

Substitution of eqns (37), (38) and (40) into eqn (7) leads to
l , .
G= _)n}’[ffﬂ‘;'f. +fT P M~ +1) P, +1)). (42)

For homogencous isotropic wedges (n = 1), eqn (42) reduces to the result in Freund
(1978). For bimaterial isotropic wedges with the crack lying at the interface (n = 2,
0. =0, = 0), eqn (42) gives the result in Nachman and Walton (1980). For the special case
of a semi-infinite crack penctrating the interface of an isotropic bimaterial and subjected to
a pair of self-cquilibrating line forces, F and —F, at the interface as shown in Fig. 2, the
energy release rate is

A e 2
G=7t(| a)(h+l)(Ff+F§)+ 2F3

4(n? —4a’)ay ra(u+u’) (43)

where x is one of the two Dundurs bimaterial parameters given by

[~~~

interface

Fig. 2. A scmi-infinite crack penetrating the interface of an isotropic bimaterial subjected to a pair
of self-equilibrating line forces.
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g KD —p+1)
T (k+D+u + 1)

(4

Equation (43) is a more general result than that given in Kubo (1982) where only the anti-
plane shear loading F, is considered.

4.2. Problem 2

In problem 2, the wedge faces 6 = 0, 0, are subjected to constant displacements such
that

u”(r.0,) ~u'"(r.0,) = b. (45)

As discussed in Section 2. if the displacement is assumed to be continuously bounded
at the apex, both M(C,) and M(C_) vanish in the limit as r - 0.

For M(C ), the solution for the uncracked composite wedge with eqn (45) is derived
as follows. Since the displacements at the wedge faces are constant, it follows from eqn (24)
that

h=0. (46)
The constant g ts determined by eqn (45). The result is

g=4"'b (47)

where

H =Y (AR0)-A%0, ). (48)
k|

Substituting eqns (46) and (47) into eqn (30) yiclds

|
G=§Eb’f"b. (49)

Note that in eqn (49) 0. is not present. This leads to a remarkable conclusion that the
energy release rate is independent of the inclination of the crack.

For a homogencous (n = 1) isotropic wedge, eqn (49) agrees with the result in Ouch-
terlony (1980). Another interesting case is that of an infinite composite strip with a semi-
infinite crack subjected to constant displacements as shown in Fig. 3. The energy release

b

[ —_— d A\
3 =
[

AN

Nerack

A Y Y

Fig. 3. A composite strip with clamped boundary conditions.
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interface

Fig. 4. An interfuce crack in an isotropic bimaterial opened by a frictionless wedge.

rate in this case can be obtained by letting @ —» o0 and ¢, 0, j = 0.1,....n such that
a(,—8,_,) = d, with d, being the thickness of the jth layer. The resulting expression of .
can be shown to be

L

Y (T4, (50)

- |

\ |
lim a ¥ =~
a0 n f

where T = T(0) in eqn (17). The corresponding energy release rate is thus given by

Eof e A
G:ih’(Z(TU’) ‘d,) b. (51)

i~

The result for n = | for isotropic materials has been given by Rice (1968). In fuct, eqn (51)
could also be obtained by the J-integral in a similar manner as discussed in Rice (1968).

4.3. Problem 3
Problem 3 is characterized by the following boundary conditions

u(r,0,)—ui"(r,0,) = B (52)
t=1,=0 at #=20,0, (53)

where uf'(r,8,) and u{"(r,0,) are constants. As discussed in Section 2,
M(C,) = M(C.) = Qin the limit as r — 0 if the displacement is assumed to be continuously
bounded at the apex. For M(C,), the relevant solution is that for an uncracked wedge
subjected to the boundary conditions eqns (52) and (53). Since the displacement 4, and the
tractions f,,7; are constant at the wedge faces, it follows from eqns (23) and (24) that
hy = g, =g, = 0. The remaining constants g,, h; and h;in eqns (10) and (11) are determined
by considering eqn (52) and the fact that the tractions 1, and {, must vanish on a circular
arc 0, £ 0 < 6,. The result is

9 B
II: =¥ ! O (54)
s 0

where ¥ is given by
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r= T A (55)

ISR

and AV = VIR ) -V ) with Vo defined by

1
-Ly. L.} (56}

From eqn (30). the value of M{C, ) is simply given by

l
MC) = 5-9,8. (57)

The corresponding energy release rate is

--.2'7‘&"'”( DB (58)

It should be noted that eqn (58) is also independent of the crack angle 4.
For a semi-infinite interface crack in an infinite isotropic bimaterial opened by a
frictionless wedge as shown in Fig. 4, eqn (58} becomues

B R TR+

" 2 (e YW 4T 5%

where I = g/ For homogeacous materials, eqn (59) is in agreement with that in Freund
(1978).
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