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Abstract-The path-independent M-integral is utilized to derive close form solutions for energy
release rates for edge cracks in composite wedges under several loading conditions. The composite
wedge considered consists of n wedges of different anisotropic elastic materials and wedge angles.
The edge crack extends from the apex of the composite wedge and can lie either in the homogeneous
region or along one of the interfaces. Three types of problem are considered. In the type I problem,
concentrated forces are applied at the apexes. In the type 2 problem, the faces of the composite
wedge are subjected to constant displacements. In the type 3 problem. mixed boundary conditions
are prescribed at the wedge faces. For interfa\''e cracks, results are valid for "traction-free" cracks
as well as for cracks with contact zones. For type 2 and type 3 problems. it is found that the energy
release rate is independent of the crack orientation.

I. INTRODUCTION

Various authors (Eshclby, 1975; Freund, 1978; Ouchterlony, 1978) have given an approach
based on the path-independent M-integral to calculate the energy release rates for some
cracks in homogeneous isotropic clastic bodies. Nachman and Walton (1980) and Kubo
(1982) showed that the approach could also be applied to interface cracks in isotropic
composites. The case of an edge crack in an angularly inhomogeneous isotropic wedge has
been studied by Wu and Chen (1989). In this paper, the approach is used to derive energy
release rates for an edge crack in a composite wedge, as shown in Fig. I. The composite
wedge consists of n wedges of different anisotropic clastic materials. In the cylindrical
coordinate system, each wedge occupies the region

(I)

in which

(2)

The edge crack penetrates from the apex into the composite and is inclined by an angle 0,.
with 00 < 0< < On' The crack tip can either lodge at a homogeneous region or at one of the
interfaces. Three types of problem are considered:

I. The apexes of the cracked wedge p + and p - are loaded by concentrated forces.
2. The outer faces of the composite wedge, 0 = 00 and 0 = On, are subjected to constant

displacements.
3. The wedge faces are subjected to constant displacement in the XI direction while

the tractions /2 and /) are zero.

The types of boundary condition are shown in Fig. I.
For the type I problem, calculation of the M-integral only requires the solutions for

uncracked composite wedges with the same boundary conditions. Such solutions have been
provided by Ting (1982) using an elegant formulation based on Stroh's method (1958) for
anisotropic elasticity. It will be shown in the following that for type 2 and 3 problems the
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Fig. I. A composite wedge subjected to three loading conditions.

energy releasc rates can also be calculated using the solutions for uncracked composite
wedges with the same boundary conditions which can be obtained by the formulation given
by Ting (198:!). For type 2 and type 3 problems, the results show that the energy release
rate is independent of the orientation of the crack.

If the edge crack is located in one of the homogeneous wedges. the ncar-tip stress lield
is proportional to r I ~ and is characterized by thrce stress intcnsity l~tctors corresponding
to the traction components along the prolongation of the crack line. The energy release
rate is given by a quadratic in the stress intensity factors (Barnett and Asaro. 1972). [fthe
loading. geometry. and materials considered arc symmetric or anti-symmetric with respect
to the crack line such that only one of the stress intensity factors is nonzero. thcn the stress
intensity factor can he determined from thc energy release ratc derivcd in this paper. [f the
crack lies along one of the interfaces and the crack f,lees arc assumed traction-free, the
ncar-tip stress field exhibits singularities of the types r' 1/2 and r UtI;' in general with "
being a constant related to the clastic constants of the adjoining two materials (Ting, 1986).
Uassani and QIl (1989) and Qu and Bassani (1989) discussed cases in which y = 0 and the
ncar-tip Held is the same as that for homogeneous media. For interface cracks with y ¥- O.
several dclinitions of the stress intensity factors have been proposed (Willis. 1971; Suo.
1990; Wu, 1990a) to characterize the near-tip field. The stress intensity factors, regardless
of the dclinition adopted. arc related to tractions along the interface in a dillcrent manner
from those for cracks with a square-root singularity. For traction-free interl~tce cracks, the
energy release rate can also be expressed in terms of a quadratic in stress intensity factors
(Willis. 1971; Suo. 11.)90; Wu. 191.)041). However, the stress intensity factors and the modes
of loading arc usually intermixed so that more than one stress intensity factor is present.
In this case. knowkdge of the energy release rate alone is not sutlicient to determine
separate stress intensity factors. It is well known that prescription of traction-fn.:e conditions
generally leads to crack face overlapping (England, 1965; Anderson, 1988; Wu, 1990a). A
model to overcome this ditliculty was proposed by Comninou (1977) for isotropic materials.
The model assumes that frictionless contact zones exist behind the crack tips. It was found
for isotropic materials that the ncar-tip stress field is square-root singular but is characterized
by only one independent stress intensity factor relating to the in-plane shear stress for plane
strain dcform'ltion. The model was extended for anisotropic materials by Wu (1990b). It
was shown by WU (1990b) that in general the singularities of the ncar-tip stress field for
the contact zone model arc r - If~ t·;,- where y* is a bimaterial constant. The ncar-tip stress
field is characterized by two independent stress intensity factors relating to the in-plane
shear and anti-plane shear stresses at the interface and the energy release rate is a quadratic
in the stress intensity factors. Conditions for y* = 0 were given by Wu (1990b). For
anisotropic bimaterials in which in-plane shear and anti-plane shear deformations are
uncoupled, separate stress intensity factors can be obtained from the energy release rate
(Wu. 1990b). The energy release rates obtained here arc valid for traction-free interface
cracks as well as those with contact zones.
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The plan of the paper is as follows. In Section 2. the approach using the M-integral to
obtain the energy release rates is reviewed. In Section 3. the fonn of the basic solutions for
uncracked composite wedges as presented by Ting (1982) is given and the relevant results
for the application of the M-integral approach are derived. Results of the energy release
rates are presented in Section 4.

2. THE JI-INTEGRAL

The M-integral is defined by

(3)

where W is the strain energy density. n, is the unit normal to curve C. I, is the traction on
C. and repeated indices imply summation. This summation convention will be followed
throughout this paper. The procedure to derive the energy release rates hinges on the fact
that M = 0 if C is a closed path surrounding a simply connected region in which no elastic
singularities are present. If C is a circular arc. eqn (3) can be expressed in a more convenient
form in terms of the displacements and the stress functions cll, as

I f(c7CI>, cu, Dell, DUI )

M = :::; -;")- ::ill + ~O- T r dO._ ir Cr U c,r

The stress functions arc defined such that the traction t on a contour r is given hy

Dcl>
t = -"os

where s is the arc length along r. If C is ~t radial line. elln (3) hel:ollles

(4)

(5)

(6)

For the problems of interest. let C be the path shown as dotted line in Fig. I. As
discussed by Nachman and Walton (1980). application of the M-integral results in the
following identity:

1
G = -(M(C..,)-M(C+)-M(C »

a
(7)

where Cex; is a circular arc surrounding the crack and subtending from Ou to O~, C and C~

are small arcs surrounding the two apexes, p + and p", subtending from Ou to 0,. and 0, to
O~. respectively. a is the length of the crack. and G is the energy release rate. For eqn (7) to
hold. the contributions to the M-integral as evaluated along the wedge faces and the crack
faces must vanish. From eqn (6). this requires

ell
t,~=oar (8)

or the traction must be orthogonal to the displacement gradient along the radial line. The
requirement is satisfied for wedge faces in the problems of interest. The requirement is also
satisfied for the crack faces if the crack faces are assumed to be either traction-free or if
frictionless contact zones are assumed to exist since the tangential components of the
traction and the nonnal displacement arc zero in the contact zones.
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If C < is sufficiently far away from the origin. M(C,,) can be evaluated using solutions
for an uncracked composite wedge with the same boundary conditions. Such solutions are
provided by Ting (1982). Similarly. if C _ and C .. are sufficiently close to the apexes p+ and
p of the cracked composite. M( C .. ) and AJ( C_) can also be evaluated using the asymptotic
solutions for sub-wedges with apexes p+ and p-. respectively. For type I problems. Ting's
solution with concentrated force acting at the apex is again applicable. For type 2 and 3
problems. the asymptotic stress field corresponding to homogeneous boundary conditions
t = 0 on one face and u = 0 or III = t: = t, = 0 on the other must be sought. In general,
the actual form of the asymptotic stress field of an anisotropic composite wedge depends
on the elastic constants of the individual homogeneous wedges, geometry of the composite
wedge. boundary conditions on the wedge faces. and interface conditions. If the dis­
placement field is required to be continuously bounded at the apex. the asymptotic stress
near the apex has the form (Ting. 1981)

r ~ F(r. 0) (9)

where ~ < I and F is a real function of the polar coordinates (r. 0). The function F contains
log r. powers of log r and trigonometric functions with 0 and log r as arguments. This
requirement of bounded displacement is satisfied if the apex of the wedge is not subjected
to concentrated forces or the displacements prescribed on the wedge faces arc identical and
finite at the apex. In fact. Ting's solution. to be discussed in the next section. corresponds
to the cases where there are forces acting at the apex or the displacement is discontinuous
at the apex. In those cases. the stress singularity is I/r. For type 2 and 3 problems. the
aforementioned situations are not prescnt. and it is therefore reasonable to assllme that eqn
(9) is valid near the apex. This is true for the homogcneous sub-wedge with wedge angle 1t

for type 2 prohlems in which case ~ = O.S (Ting. 1986). It is not dilllcult to show that for
type 3 prohlems with the salllc wedge ~ is also O.S. With the asymptotic stress of eqn (9)
suhstitull.:d in eqn (4). the corresponding IH(C .) and M( C ) vanish as r -- n.

.'. UNCRACKU) COMPOSITE WEDGES

For the composite wedge shown in Fig. I but without the crack. the solutions in the
k th composite for the three types of boundary conditions shown in Fig. I can be represented
as (Ting. 1982)

log r - - '/'<l>lkl = __ ~_L(k)«())h+S(kl «()~

1t

( 10)

( I I)

where h. g and e(kl arc real constant vectors. In eqns (10) and (II) the matrices are given
by

and

I fU .SUJ) = - T l(w)R'(w)dw
1t II

I fllAUJ) = T I (w) dw
1t II

L(O) = ~ fll [Q(w) - R(w)T -1 (w)RI'(w)] dw
1t 0

( 12)

( 13)

( 14)
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nT(w) = [cos w. sin w. 0]

mT(w) = [-sin w, cos w, 0]

599

(15)

(16)

(17)

(18)

( 19)

with Cijk, being the elastic constant. The superscript kin Slk). H1k
) and (lk) denotes that the

elastic constants for the kth wedge are used. Equations (10) and (II) are valid for isotropic
materials as well. The matrices S, Hand Lfor isotropic materials are listed below

[

I-cos 20
- I
S(O) = 1t(I\+ I) (1\-I)Oo-Sin 20

-«I\-I)O+sin 20) 0]
cos 20- I 0

o 0

(20)

[

21\0+sin 20
- I

H(O) = ----- I-cos 20
21tJt(1\ + I)

o

I-cos 20

2l\O-sin 20

o
(21 )

[

2lJ +sin 20

- 2Jt I -cos 20
L(lJ) = ~(~+T) 0

I -cos 20

2lJ - sin 2lJ

o
(22)

where 1\ = 3-4v for plane strain deformation with v being Poisson's ratio and Jl the shear
modulus.

Note that the constant vectors hand g in eqns (10) and (II) arc the same for all k.
This is because the traction ttl and the displacement gradient au/or corresponding to eqns
(10) and (II) on the radial planes arc given by

aeP I
til = - - = --gar nr

au I
-=-h
Dr 1tr

(23)

(24)

and these quantities are continuous across thc interfaces. The rigid body displacement elk)

in cqn (10) is detcrmined by the continuity conditions on the displacement at the interfaces.
i.e.

for k = 1,2, .... n - I. When hand g are known, eqn (25) provides solutions for c( 2), •.•• c(~)

in terms of c( II which can be arbitrary.
With the form of the solutions represented as in eqns (10) and (II), the condition that

the contribution to the M-integral along the radial lines vanishes as described by eqn (8) is
expressed by
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The contribution to the At-integral, ,Uk, along part of the circular arc in the kth wedge can
be obtained by substituting eqns (10) and (II) into eqn (4). The result is given by

(27)

where

(28)

(29)

In deriving eqn (27), eqn (26) has been used. The expression of the M-integral for the entire
circular subtending from On to 0" is simply

(30)

where

(31 )

(32)

Equation (30) is the main result of this scction. The simple form of eqn (30) enables onc
to obtain the value of the M-integral as soon as the constants h and ~ arc determined.

4. FNEIHiY RU.EASE RATES

In this section explicit solutions of the energy rates for the problems shown in Fig. I
arc derived using eqn (7) in conjunction with eqn (30). Without loss of generality, the cr;lck
is assumed to lie in the kth wedge, i.e. Ok I ~ 0, ~ Ok'

4.1. Prohlem I
Consider the line force f t acting at the apex of the composite wedge subtending from

0, to 0" in Fig. I. As the traction is zero on the wedge faces, from eqn (23), it follows that

g = O. (33)

The constant h can be determined by the fact the traction resultant on the circular arc from
0, to 0" must be in eq uilibrium with the applied force f .. , i.e.

"I 6<D1J) +«I»lk'(r, (J.) _<I>(kl(r, 0,) = ft.
j • k .. I

From eqn (II), h is determined as

h= -2't'f.

where 2' t is defined by

"
2' t = L 6LIJl + fY'(Ok) - L(kl(O,).

,_kt I

With cqns (33) and (35), from eqn (30), the corresponding M(C t ) is

(34)

(35)

(36)
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(37)

Similarly M(C_) for the composite wedge Bo ~ B~ Be with the line force L acting at the
apex is given by

"'here !f _ is defined by

.\:-1

!f _ = L diy)+i,I'\:)(Oc)_i,(kl(Ok_d.
J= I

(38)

(39)

For M( C -.;). the solutions of the entire composite wedge from 00 ~ 0 ~ On with the force
f ~ +f _ must be used. The result is

where !I' is given by

n

!I' = 2" + +2". = L dL.<o.
J- 1

Suostitution of eqns (37), (38) and (40) into eqn (7) leads to

G = ., I [f~ 2' ; I f I- + r~!I' .I L - (f I- + L )r2)' 1(f I- + f »).
_lUI

(40)

(41 )

(42)

For homogcncous isotropic wcdges (Il = I). eqn (42) reduces to the result in Freund
(1978). For bimateri.11 isotropic wedges with the crack lying at the interface (Il = 2.
0, = 0, = 0). eqn (42) gives the result in Nachman and Walton (1980). For the special case
of a semi-infinite crack penetrating the intcrface of an isotropic bimaterial and subjected to
a pair of self·equilibrating line forces, F and - F. at the interfacc as shown in Fig. 2, the
encrgy relcase ratc is

n(l-cr)(K+I) " 2Fi
G=4( 24') (Fi+F:O+ ( ')n - cr- aJ.l no Jl+J.I

where C( is one of the two Dundurs bimaterial parameters given by

(43)

J.L, y J.L', y'

I.---,;:;:;. .lt.
Interrace

Fig. 2. A semi-infinite crack penetrating the interface of an isotropic bimaterial subjected to a pair
of self-equilibrating line forces.
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.u' (I( + I) - .u( 1(' + I)

~= .u'(I(+I)+.u(I('+I)·

Equation (43) is a more general result than that given in Kubo (1982) where only the anti­
plane shear loading F J is considered.

4.2. Problem :2
In problem 2. the wedge faces e= eo. en are subjected to constant displacements such

that

(45)

As discussed in Section 2. if the displacement is assumed to be continuously bounded
at the apex. both M(C+) and M(C _) vanish in the limit as r -+ O.

For M(C .. ). the solution for the uncracked composite wedge with eqn (45) is derived
as follows. Since the displacements at the wedge faces are constant. it follows from eqn (24)
that

h = O.

The constant g is determined by eqn (45). The result is

g = .j{' 'b

where

"
.f(' = L (fl'k'(Od - fl1kl(Ok d).

k-I

Substituting eqns (46) and (47) into eqn (30) yields

(46)

(47)

(4X)

(49)

Note that in eqn (49) 0, is not present. This leads to a n:markablc conclusion that the
energy release rate is independent of the inclination of the crack.

For a homogeneous (n = I) isotropic wedge. eqn (49) agrees with the result in Ouch­
terlony (1980). Another interesting case is that of an infinite composite strip with a semi­
infinite crack subjected to constant displacements as shown in Fig. 3. The energy release

b

crack

Fig. 3. A composite strip with clamped boundary conditions,
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a-~~~~;::..--~~-t- Xz

Fig. 4. An interface crack in an isotropic bimaterial opened by a frictionless wedge.

rate in this case can be obtained by letting a -+ 00 and 0, -+ O. j == O. I, ...• n. such that
a(O/-(J,_ I) == d/ with tlj being the thickness of the jth layer. The resulting expression of.f{'
can be shown to be

(50)

where T == T(O) in eqn (17). The corresponding energy release rate is thus given hy

I (n ) IG:= ,bl" L (T(jl) .. ld/ b.
..... , .... 1

(51 )

The result for n := I for isotropic materials has been given by Rice (1968). In fuct. eqn (51)
could also be obtained by the J-integral in a similar manner as discussed in Rice (1968).

4.3. Problem 3
Problem 3 is characterized by the following boundary conditions

(52)

(53)

where u'tl(r. On) and u(lll(r.Oo) are constants. As discussed in Section 2.
M(C .. ) = M(C.) =0 in the limit as r -+ 0 if the displacement is assumed to be continuously
bounded at the apex. For M(Cct;), the relevant solution is that for an uncracked wedge
subjected to the boundary conditions eqns (52) and (53). Since the displacement UI and the
tractions 12,1) are constant at the wedge faces, it follows from eqns (23) and (24) that
hi == 9 1 =g) =O. The remaining constants9 I. h 2 and II 3 in eqns (10) and (II) are determined
by considering eqn (52) and the fact that the tractions /2 and /3 must vanish on a circular
arc 00 ~ 0 ~ 0/0' The result is

(54)

where " is given by



";'=)' ,1V".....
pI

fa"
Sl~

_s~:Jv =~10 -i':.~

SU -L~~ -L n

From eqn 00). the value of .if{Cio ) is simply given by

The corresponding energy release rute is

It shoukl be noted that cqn (58) is also independent (lfthe cmck angle 0,..
For H semi-infinite intcrlllcc crack in .m inflnitc ii'!\)tropic bim<llcrt.lf upened

frlctionkss wedge .IS shown in Fig. 4. cqn (51\) becomes

G := JtlJ~ M:' + I +f{~+ I)
2;r;u (1\:+ 1:0(1\:'+n

(55)

(56)

(57)

(58)

(59)

where I' = 11'//1. For h~Hn(lgcnC()usmatcri"ls, cqn (59) is in agreement with that ill Freund
(1\)71'),
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